

▶ 本报记者 叶伟

"目前,全球新材料发展呈现三级 梯队竞争格局,我国处于第二梯队。" 中国工程院院士、中国工程院原副院 长、国家新材料产业发展专家咨询委 员会主任干勇在5月19日举行的2025 年北京新材料大会上表示,随着产业 转型升级,我国新材料产业发展进入 关键窗口期,要加大研发投入,构建 "AI(人工智能)+新材料"技术体系, 向"以自主创新为主"的科技创新模式 转变,迈入全球新材料第一梯队,建设 材料强国。

创新体系逐步完善

根据工信部发布的《新材料产业 发展指南》,新材料主要包括先进基础 材料、关键战略材料、前沿新材料三大 类。先进基础材料包括高性能金属、 特种塑料与橡胶、陶瓷、玻璃等;关键 战略材料包括稀土功能材料、先进半 导体材料、新型能源材料及新型显示 材料等,是发展战略性新兴产业的重 要原材料;前沿新材料包括用于高端 医疗器械的纳米材料、石墨烯材料等。

"新材料是经济社会发展的物质 基础,是高新技术和高精尖产业发展 的先导。"中国工程院院士、北京科技 大学学术委员会主任谢建新说。

我国高度重视新材料产业的发 展,先后出台《"十三五"国家战略性新 兴产业发展规划》《国家新材料生产应 用示范平台建设方案》《"十四五"原材 料工业发展规划》《标准提升引领原材 料工业优化升级行动方案(2025-2027 年)》等,旨在推动新材料产业高质量 发展。

同时,我国材料创新体系逐步完

余个国家材料技术(工程)创新中心及 重大平台,推动我国新材料产业自主 创新能力不断提升。

"我国自主开发的半导体照明材 料、光伏材料、非线性激光晶体、分离 膜材料、非晶合金等新材料技术已达 到或接近国际水平,部分处于国际领 先。"干勇表示,关键新材料的不断突 破,为我国航空航天、能源交通、工程 建设、资源节约与环境治理等领域国 家重大工程的实施提供了不可或缺的 物质基础和保障。比如高性能钢材 料、轻合金材料、工程塑料等产品结构 持续优化,有力支撑和促进高铁、载人 航天、海洋工程、能源装备等国家重大 工程建设及轨道交通、海洋工程装备 等产业"走出去"。

市场需求旺盛

随着新型工业化的加速推进,我 国新材料产业面临重大机遇,新材料 市场需求旺盛。

"当前,在新一轮科技革命和产业 变革的大背景下,新材料和新物质结 构不断涌现,新材料科技创新保持高 度活跃,材料科技创新呈现需求牵引 和交叉学科驱动的态势。"干勇说,传 统硅基半导体材料已难以满足未来社 会对智能化和高效能的需求,信息功 能材料的不断创新是先进计算、人工 智能、新一代通信及网络、物联网、柔 性显示、量子科技、生物医药等新技术 发展的关键,具有不可替代作用,可推 动器件、系统、整机的功能和性能发生 质的飞跃和革命性变化。

干勇举例说,在运载工具领域,预 计到2030年,我国大客机将达到数千

为300万吨、200万吨和50万吨。在能 源动力领域,预计到2030年,我国需 建设上千台600℃、700℃超超临界火 电机组,需耐热钢和耐热合金数千万 吨;海洋资源勘探、开采、储运及基础 设施建设对钢及耐腐合金需求量达到 60万吨。在生命健康领域,预计到 2035年,用于胃肠道疾病、皮肤疾病常 用药物的填料,矿物纳米材料的需求 量将达到30万吨。

工业和信息化部赛迪研究院材料 工业研究所张海亮表示,人形机器人 的发展,对轻量化材料、驱动材料和感 知材料等新材料的需求巨大。

在巨大的需求驱动下,我国新材 料产业加速跑。工业和信息化部发布 的数据显示,2024年1-11月,我国新 材料产业总产值同比增长10%以上, 连续14年保持两位数增长,预计2025 年新材料产业总产值将达到10万亿 元规模。

探索"AI+新材料"融合方式

"伴随着AI、机器学习等新技术的 发展,AI正改变着新材料研发和制备 方式。"干勇表示。

"数字化和AI技术迅速发展成为 材料领域前沿、共性关键技术,为从根 本上解决新材料研发效率低、成本高 的瓶颈问题提供了崭新途径。"谢建新 介绍说,应用AI技术能够对海量数据 进行挖掘,从中提取、总结出材料"成 分一结构/组织一工艺一性能"内禀关 系或科学机理,实现新材料发现和材料 成分设计、工艺优化、性能/质量提升,加 速新材料、新工艺的研发和应用。


比如,小米汽车身上的"泰坦合 金",实现从实验室到量产车的智能跃 迁;中国钢研6个月内设计开发出世 界上强度最高(800MPa级别)的高性 能抗氢厚板材料;中石化以AI赋能的

分子筛催化绿色氧化工艺开发推动传 统研发模式的变革,助力新型催化工 艺自主化;北京科学智能研究院引入 AI分子表示学习模型,设计出不含贵 重金属的新一代OLED发光材料……

如何进一步加快AI技术和新材 料的融合发展?干勇说,要加快建立 中国特色"AI+新材料"创新体系。

"'AI+新材料'的基石在于高质量 数据集。"中国钢研数字化研发中心首 席科学家苏航表示,高质量材料数据 集的特征是同源性、分散性、规模性、 可信性、完备性,"为此,要通过高通量 计算、高通量实验、区块链数据发现等 手段,分别构建可信计算数据集、可信 实验数据集、可信应用数据集,才可能 形成大量细分领域的完备数据集,支 撑垂直领域新材料AI与多智能体群 建设,支持材料科学AI化发展。"

"数据、算法、算力是AI三大要 素,数据是AI的重要基础。"谢建新表 示,要构建关键材料全覆盖、研发一生 产一应用全融通的数据资源体系,让 数据资源丰富、可靠、好用;要创新材 料数据产权和共享机制,构筑高效可 持续流通交易生态,让数据畅通共享、 数据市场繁荣;要不断研发和供给材 料数据产品,推动新材料数字化智能 化发展,让数据创新价值、赋能发展, 推动"AI+新材料"创新体系建设。

