潘克菲:小小纳米银线里孕育大梦想

纳米,是一个长度单位,约等于 十亿分之一米。而纳米银线的直径 也只有头发丝的万分之一。

在苏州诺菲纳米科技有限公司 (以下简称"诺菲纳米")创始人、董 事长兼首席技术官潘克菲的眼中, 纳米银线是一条逐梦的"赛道"。如 今,诺菲纳米凭借小小的纳米银线 在全国乃至全世界都"无触不在"。 该企业瞄准万亿元级的触控显示、 柔性可折叠、光伏储能、智能车载、 电磁屏蔽材料市场,正在构筑一个 "材料改变生活"的梦想。

不安于现状

潘克菲毕业于美国普林斯顿大 学,获化学工程专业博士学位,曾 任职于美国通用电气公司全球研 发中心,后在新能源尤其是太阳能 领域钻研多年。这位学术达人拥 有20多年的纳米薄膜研究和工业 生产经验,并掌握纳米材料镀膜工 艺的相关理论和技术。


谈及缘何放弃待遇优厚的外企 工作、选择走上创业路时,潘克菲表 示:"或许是源于那颗不安于现状的 心,或者是骨子里喜欢挑战。当时 一眼就可以看到头的职业生涯,让 我很想走出舒适圈。"

2007年1月9日,美国苹果公司 发布iPhone 手机,由此引发了触控热 潮。随后,潘克菲又看到了康宁公 司描述未来生活场景的影片——《未 来的一天》。

主人公在银幕上像变魔术一般 将一张透明的"纸"随意展开,手指 点一下就是电脑,往墙上一贴就是 屏幕。

时任美国硅谷一家知名太阳能 公司研发总监的潘克菲突发奇想: 能不能将用于光伏面板的纳米银线 材料用在触控屏上?

潘克菲介绍说,纳米银线具有优 异的透光率、高导电性和可弯折性 等特点,用纳米银线做成的导电膜 在导电性能、信号传输能力等方面 效果更好。若能应用于触控屏,用 户的体验感将大大提升。

潘克菲与第一卷 1600mm 宽幅纳米银导电膜

车库里搞实验

机缘巧合的是,潘克菲找到北极 光创投合伙人杨磊,表明想用纳米 银线作为下一代触控材料的想法。

"试着做点小样,合成点东西。" 因为杨磊的一句话,潘克菲干脆将 自家车库改成实验室。

彼时,车库里摆满了各种实验器 具,条件十分简陋,甚至没有将纳米 银线从材料制成导电薄膜的涂布设 备,潘克菲只好亲自上手,在电钻头 上放置一块平板将银线墨水往上一 滴,就开始进行涂布操作。

在艰苦的条件下,潘克菲坚持完 成了实验。最终,杨磊被这份对技 术的热爱和执着所打动,潘克菲也 获得了创业过程中的第一笔资金支 -来自北极光创投的220万美 元的投资。

在杨磊的介绍下,潘克菲结识了 毕业于美国斯坦福大学、后成为诺菲 纳米联合创始人兼总经理的姜锴。

2012年1月,潘克菲与当时还 在ATMEL担任高管的姜锴,在中国 苏州工业园区创立了诺菲纳米。 二人把逐梦的"赛道"聚焦于纳米 银线,希望成为触控行业的颠覆 者,把美国硅谷最前沿的技术做成 中国最接地气的产品。

永葆创业初心

2012年,全球将近50%的手机使 用了触控屏技术。彼时,触控屏广 泛使用的导电膜是由氧化铟锡 (ITO)材料制成,薄膜质地较脆、阻 值高、易折断,且几乎被日本企业所 垄断。要想在触控材料中蹚出一条 新路,对当时"一穷二白"潘克菲而 言,难度可想而知。

与大多数初创企业一样,诺菲纳米 也遇到了人才和资源匮乏两大难题。

彼时,刚在苏州落户的纳米诺菲 无人知晓,收到的简历也寥寥无几。

"找不到行业人才,就从高校招 聘毕业生进行培养;买不到设备,就 借助多方渠道,自己'攒';而'攒'出 来的第一台涂布设备,费用就节省 了八成。"潘克菲说。

摆在潘克菲面前的困难远不止 于此,在那个热衷于投资消费和互 联网的年代,鲜有投资人关注硬科 技,市场投资相对保守。资金、设备 的缺乏让潘克菲的创业异常艰难。

历经10余年艰辛的创业道路, 诺菲纳米闯过了一道道关卡。目 前,诺菲纳米在纳米银线材料领域 的出货量居全球第一位,是国内规 模最大的纳米银生产基地,月最大 产能超40万平方米。其客户体系囊 括了Zoom、鸿合、视源、惠普等知名

"诺菲纳米用不到国外竞争对手 1/20的成本、1/3的时间,实现了国际水 平的突破。"这让潘克菲感到无比骄傲。

值得一提的是,诺菲纳米的纳米 银线触控屏已实现了120寸的自主 生产。"120英寸基本可以覆盖会议 室里大部分的显示屏,包括会议白 板,甚至教室的黑板。"潘克菲说,选 择高效的生产方式,降低成本,让下 游客户用得起,从而将纳米银线材 料普及到更多领域,是诺菲纳米接 下来要走的路。

2029年先进功能材料市场 规模将超2000亿美元

本报讯(记者于大勇)近日,咨询顾问公司 贝哲斯咨询发布的调研报告显示,2024年全球先 进功能材料市场规模达1503亿美元,预计2029 年将增至2070亿美元。

根据类型,先进功能材料市场可细分为陶 瓷、能源材料、导电聚合物、纳米材料、复合材料 及其他。

贝哲斯咨询预计,2024-2029年,纳米材料将 占据先进功能材料市场最大份额。推动这一细 分市场发展的因素包括高拉伸强度、耐久性、刚 性、饱和磁化、耐腐蚀性和耐磨性、抗性、分子动 态改进和可靠性。

此外,环保意识的增强为生物纳米材料发展 开辟了道路,新产品的推出和广泛的研发活动也 为市场的扩大做出了贡献。

贝哲斯咨询认为,2024-2029年,亚太地区将 占据先进功能材料市场主导地位,该地区的发展 受到一系列因素的推动:研究和创新的兴起、主 要参与者和风险资本家的存在、技术先进的设 备、新的合作和突破性产品的推出、消费者对汽 车制造和电子零件需求的增加、工业基础设施的 蓬勃发展以及城市化进程。

此外,欧洲预计将成为先进功能材料市场增 长最快的地区,这主要归功于汽车行业的扩张。

我国在高温超导磁控硅单晶 生长技术领域获突破

科技日报讯 (记者 魏依晨) 近日,由中国电工 技术学会主持、宁夏超导泛科技有限责任公司(以下 简称"宁夏超导泛科技")牵头组织的"高温超导磁控 硅单晶生长装备、技术及应用科技成果鉴定会"在宁 夏银川市举办。

据悉,宁夏超导泛科技成立于2024年12月,由 宁夏盈谷实业股份有限公司、江西联创超导技术有 限公司等多家企业和自然人联合投资设立。

鉴定会上,由中国科学院院士甘子钊领衔的 专家委员会对项目进行了全面评估。专家一致认 为,该技术填补了我国在高端硅晶体制造领域的 多项空白,综合性能达到国际领先水平。

据介绍,高温超导磁控硅单晶生长装备、技术 及应用的关键,在于引入高温超导磁体技术。科 研团队针对高品质大尺寸硅单晶生长技术瓶颈, 研制出高温超导磁控硅单晶生长装备,形成大尺 寸硅单晶长棒快速、高稳定性、低含氧量的生长工 艺,实现大尺寸(12英寸以上)高品质硅单晶的生 产,经济和社会效益显著。

项目报告显示,宁夏超导泛科技自主研发的 高温超导磁控硅单晶生长设备及技术,可将硅片 含氧量稳定控制在5ppma(质量百万分比)以下, 硅棒头尾利用率提升4%以上,生产效率提升 12%,目前已拉出直径达340毫米的高品质硅棒。

中国科学院院士甘子钊在评审中表示:"这是 国际上首次将高温超导技术应用于磁控直拉单晶 生长,为高温超导技术产业化做了很多开创性的 工作,开辟了超导技术产业化新赛道。"他特别提 到,该技术对实现"双碳"目标具有战略意义。

专家委员会认为,该项目解决了磁控条件下 大尺寸硅单晶生长炉高温度均匀性节能型热场设 计、模块化大尺寸传导冷却高温超导磁体设计、电 一磁一热一流体多场耦合下硅单晶生长分析与控 制等关键技术难题,取得多项创新性技术成果。科 研团队研制的高温超导磁控硅单晶生长装备,在生 产实践中得到了应用,这表明该项目总体技术水平 已达国际领先。

苏州诺菲纳米科技有限公司