"双碳"目标下需重视十大技术方向

景春梅 陈妍 梁鹏

实现碳达峰、碳中和(简称"双碳")是一场广 泛而深刻的经济社会系统性变革。如期实现"双 碳"目标离不开重大技术突破和科技创新支撑, 其中关键性技术方向可分为3个层次。

首先,是电气化技术。电气化是终端能源消 费的重要方向,也是实现"双碳"目标的基础条 件,智能电网、储能、核能、动力电池技术等都是 有助于推动提升电气化水平的技术。其次,是在 无法电气化的领域通过新型燃料替代实现深度 脱碳,包括在航运、工业和供暖等领域难以脱碳 环节实现对化石能源的替代。再次,是通过节能 提效或负碳技术等,实现成效显著的降碳。

以上3个层次的技术方向,是确保"双碳"目 标高效实现的重要支撑,在"十四五"及今后一个 时期需给予高度重视和重点支持。

一、适应高比例可再生能源并网 的智能电网技术

电气化是能源转型的重要方向,电力行业的 减碳脱碳是我国"双碳"目标实现的基础。电力行 业减碳脱碳的路径是,大幅提升风光等可再生能源发 电装机容量和发电量占比。按照碳达峰、碳中和工作 要求,到2030年,我国风电、太阳能发电总装机容量 将达到12亿千瓦以上,比当前翻一番。根据测算,到 2060年实现碳中和时,非化石能源发电量占比将由 目前的34%左右提高到90%以上,而非化石能源的主 体将是风能和太阳能等可再生能源。

由于可再生能源发电的间歇性、波动性特征,大 规模、高比例接入电网将给电力供应稳定性带来挑 战。作为电力资源优化配置的平台,电网不同时间尺 度电力供需平衡调度难度将大幅提升,对电网高效稳 定安全技术方面提出更高要求。为实现大规模、高比 例可再生能源并网,需加强远距离、大容量直流输电 与电网柔性互联技术,以及电网稳定运行控制技术研 发,加快柔性直流输配电、新型电力系统仿真和调度 运行等技术的研发应用。同时,需加强需求侧响应与 虚拟电厂技术,通过发挥需求侧作用,提升电力系统 整体灵活性。

二、长周期大容量的储能技术

随着可再生能源并网比例持续提高,需要配

置大规模储能以保障电力系统安全稳定。而当 前以电化学储能为主的储能方式更适用于平抑 短时的电力波动,未来随着非水可再生能源发电 占比提升,需要平抑数日、数周乃至季节性的电 量波动,需采用长时间、大容量的储能技术,以实 现更广时间和空间范围的能量转移。从储能技 术看,可实现这一储能要求的储能方式较少。

从国际趋势与国内技术示范看,固态锂离子 储能电池技术、压缩空气储能、液流电池、氢储能 等,将是大规模储能的主要技术方向,应鼓励开 展不同储能技术路线探索,加强技术储备,开展 源网荷侧多类型储能技术示范应用。

三、安全高效的核能技术

推动我国能源绿色低碳转型,需要多种能源 品种的相互配合,核电是其中的重要选项。特别 是可再生发电占比不断提升将给电力系统的安 全稳定带来冲击,作为出力稳定、清洁无碳的电 源,核电在电源结构中的重要作用仍难以替代。

国际上,日本福岛核事故导致各国核电发展 战略都有所收缩,但并没有使核电发展发生逆 转.而是仍在持续增长,这表明核电对于全球电 力系统实现低碳转型有重要作用。我国仍须坚 持在安全的前提下有序发展核能,确保持续支持 先进核能技术研发,特别是先进和创新型反应堆 和燃料设计技术,关注并探索具备成本低、灵活 性强等特点的小型模块化核反应堆技术等,更好 发挥我国核能技术优势,使核能成为助力能源转 型的重要选择之一。

四、推动道路交通降碳的先进电 池技术

道路运输始终是我国交通领域低碳绿色发 展的重点方向,温室气体排放量占交通运输行业 总排放的80%以上。经过多年发展,我国新能源 汽车技术路径已较为清晰,锂电池电动汽车技术 水平也有较大提升,成为道路交通领域降碳的重 要保障。目前制约电动汽车发展的主要障碍是 续航里程和安全性问题,相对目前的液态锂电池 技术,固态锂电池安全性更高、能量密度更高,对 于电池正极材料的选择范围更广,可大幅度提高 电动汽车安全性和续航里程。固态锂电池技术 是支撑电动汽车大规模替代燃料油车的关键技 术,是动力电池技术的重要方向。

另外,与锂电池相比,氢燃料电池在能源密 度、系统容量、加注时间、耐低温方面都有明显优 势,可在中重型车型应用。

从目前看,固态锂电池技术、氢燃料电池技 术将是支撑道路交通领域碳达峰、碳中和的关键

五、实现船用燃料替代的关键 技术

我国水路运输仅次于道路运输,占交通领域 碳排放的8%左右。从全球看,航运业属于碳排 放大户,排放占比为3%左右,若作为一个国家计 算,将是世界第六大排放国。船用燃料油属于重 质燃油,相对车用燃料油品质量更低,燃料替代 压力更大。

国际海事组织(IMO)已提出到2030年全球 海运碳排放量比2008年减少40%,到2050年减少 至2008年水平的一半。未来进一步提升船用燃 料油的品质、寻找替代燃料以及提升供能效率, 将是航运业低碳发展的重要方向。液化天然气 (LNG)是船用燃料由高碳到低碳替代的重要选 择,需通过船用重型燃气轮机技术,特别是回热 机组和中冷机组两大核心部件功能提升,大幅度 提高热效率和输出功率,实现燃料替代,降低碳 排放。未来燃氢燃气轮机、船用氢燃料电池也是 重要技术方向。从燃料替代看,生物燃料、合成 燃料、氨等低碳燃料,均有机会实现对船用燃料 油的替代。

六、实现工业深度脱碳的原料替 代技术

工业部门对全球温室气体排放的贡献率在 30%左右,我国的情况也大致如此,而且工业部门 是国际上公认的实现碳中和难度最大的部门。 交通、建筑行业都有相对明确的技术路线,可通 过最大程度推动电气化实现降碳目标,但工业生 产过程的很多环节难以实现电气化。根据我国 研究机构的预测,到2060年工业领域电气化率只 能达到50%左右。在工业生产中,化石能源被作

为原料大量使用,特别是在钢铁、水泥、化工等碳 排放大户中,对化石能源类原料的替代技术,是 实现深度脱碳的主要技术方向。

钢铁行业需实现利用氢气或生物能代替焦 炭作为高炉炼钢的还原剂的技术突破,以减少 乃至完全避免钢铁生产中的碳排放。水泥行 业需寻找石灰石作为原料的替代品和相关技 术。化工行业的合成氨、石油化工加氢裂解工 艺中,通过可再生能源电解水制氢技术替代化 石能源制氢,是这些用氢工艺脱碳的重要技术

七、工业高品位热源替代技术

一般而言,工业生产中超过1/3的碳排放来 自以化石能源作为燃料为工业生产提供热源。 据国际能源署(IEA)的统计,目前全球提供高品 位热源的仍是化石能源为主,约65%来自煤炭、 20%来自天然气、10%来自石油。在钢铁、水泥、 化工品等产品生产过程中,需要温度在400度以 上的高品位热源,电气化手段只能实现对于中低 品位热能的替代,无法提供高品位热源,而且电 气化改造意味着需重新调整窑炉设计,可能对生 产工艺会产生较大影响。

在"双碳"目标要求下,对高品位热源的低碳 替代将有较大需求,也是工业领域降碳的重要方 面。从目前看,氢能和生物质能作为高品位热源 已具有技术可行性,主要的障碍仍是成本过高。

八、低碳高效、因地制宜的供暖技术

近年来,我国持续推进冬季清洁供暖工作, 但现有的"煤改电""煤改气"等供暖方式存在较 大争议,面临清洁能源供应不足、成本过高等问 题,而将天然气、电力等高品位能源转化为低品 位热量来供暖的方式被认为是"高能低用",不符 合低碳高效低成本供暖的要求。冬季供暖耗能 量大且极大依赖化石能源,对"双碳"目标影响较 大,且属于民生工程,因此探索选择科学合理的 供暖技术路线的要求十分迫切。

在我国北方农村地区,适宜将生物质能作为 供暖能源的主要选择。国际上最大的可再生能 源热源就是生物质,而且欧盟计划到2040年主要

依靠生物质能在供热领域率先实现碳中和。我 国利用生物质能供暖的技术和资源条件已具备, 需进一步完善提升相关技术水平,特别是加大大 型高效低排放生物质锅炉、工业化厌氧发酵等重 大技术攻关力度,探索新型生物质能加工工艺, 提高生物质能利用率。同时,应高度重视低品位 热源的利用空间,加大对工业余热高效回收利 用、基于低品位余热利用的大温差长输供热等技 术的攻关。南方地区冬季取暖将是新增能源消 费的重要来源之一,可探索氢燃料电池热电联供 技术的试点应用,作为城市分布式供暖方式的选 择之一。

九、系统性节能提高能效技术

节能和提高能效,是实现"双碳"目标最低成 本的路径。IEA报告分析称,如果要实现把全 球温升控制在2度以内的目标,到2050年前节 能提高能效对全球碳减排的贡献为37%,而发 展可再生能源贡献为32%。我国节能提高能 效空间巨大,应加大基于信息技术的全局优 化系统节能效技术创新,特别是能源梯级利 用技术、工业通用系统节能技术以及智能建 筑管理系统技术等。同时,需重视新型业态 高能耗问题,高能效比的存算一体芯片技术 将是提升大数据中心等新兴服务领域能效水平 的关键技术。

十、碳捕集、利用与封存技术等 负排放技术

碳捕集、利用与封存技术(CCUS)等负排放 技术,是实现碳中和的必备技术之一。联合国政 府间气候变化专门委员会发布的《IPCC全球升 温 1.5 度特别报告》提出了将全球升温幅度控制 在1.5度的4种情景,其中3种情景都需要大规模 运用CCUS技术。未来在难减碳领域,要实现净 零排放更是离不开 CCUS 等负排放技术突破和 规模化应用。未来重要的技术方向,包括生物质 能碳捕集与封存(BECCS)、直接空气捕集 (DAC)、二氧化碳有效利用以及太阳辐射管理等 地球工程技术。

(作者单位:中国国际经济交流中心)

解析智慧城市建设 寻求重大产业机遇

智慧城市,是建设网络强国、数字中国、智慧 社会的载体单元,是城市能级与核心竞争力的重 要体现,更是各类巨头企业、巨量资本等争先入 局的综合产业领域。

一、智慧城市发展历程

智慧城市的简单定义,就是运用信息和通信 技术手段感测、分析、整合城市运行的各项关键 信息,对包括民生、环保、公共安全、城市服务、工 商业活动在内的各种需求做出智能响应,实现城 市智慧式管理和运行。截至目前,智慧城市已经 历了3个差异较为显著的发展阶段,不同阶段有 其相对应的特征与内涵。

1. 智慧城市发展的3个阶段

概念导入期。2008年,由外企率先启动了政 府信息化服务项目,"管理任务繁重、缺乏先进手 段"是政府方面临的最大痛点,"信誉度最高,投 资风险小"的特点是企业人局的动力来源,以国 际巨头企业为主导的智慧城市建设应运而生,开 创了一个新型产业领域。

试点探索期。2012年,住建部发布《关于开 展国家智慧城市试点工作的通知》,成为由政府 牵头进行全国范围智慧城市建设的标志。国内 众多集成商在交通、工业、医疗等政府职能领域协 助下规划建立了各地的政务系统与平台,同时各部 委在这个阶段建设成了一套自上而下的内网业务系 统,要求地方委办局的业务数据统一向上汇交,标志 着国家在信息化领域完成了由中央到地方的部署。

统筹融合期。在上个时期内,各地、各领域 业务主体建设了大量系统平台,但建设之时未将 信息共享的技术与机制前置,更多只是"为我所 用",导致出现"信息烟囱、数据孤岛"现象,造成 资源浪费与效率低下;同时,智慧城市建设多侧 重于技术和管理,忽视了技术与人的互动、"信息 化"与"城市有机整体"的协调。因此,以国家统 筹、"三融五跨"为特征的新型智慧城市理念逐步 推广,致力于效率提升、回归人本,开启了新阶段 的统筹融合式建设。

2. 智慧城市建设发展的阶段性特征与内涵

多元融合是智慧城市建设发展的主要特征 与内涵。智慧城市建设的不同发展阶段对应了 不同核心特征与内涵,整体沿着效率优先一场景

链接一多元融合逐步转变,也对应着以系统为中 心一以场景为中心一以人为本的智慧城市1.0至 3.0的升级演进,最终形成信息技术"搭桥",城市 与人互动的良好局面。

二、智慧城市产业图谱与重要产 业热点

1. 智慧城市产业图谱

七大产业板块构成智慧城市产业体系。

智慧城市是一个产业综合领域,囊括了众多 行业分支,不同时期的产业结构、企业类型均存 在差异。目前,在产业结构层面,可划分为标准 规范、顶层设计、基础设施、智能中枢、智慧应用、 运营服务、网络安全七大重点板块;在企业类型 层面,ICT设备供应商、电信运营商、系统集成 商、软件开发商、互联网企业、金融企业及房地产 企业是其中的主要企业分类。由当下产业结构与 企业类型可以看出,新时期的智慧城市建设已形成 了自上而下的完整架构,企业类型的多样性也为 搭建"三融五跨"的系统、平台注入了推进动力。

2.重要产业热点

2.1. 自然资源信息化

自然资源信息化,是企业争夺未来城市数据 与接口的最佳切入点。其对应的典型产品是"国 土空间基础信息平台",是目前"一张图"概念下 最为原始、最具权威、最为顶层的建设内容之一, 可简单概括为承载现状数据(遥感测绘、地质及 环境、土地利用、自然资源)、规划数据(控制线、 空间规划、地质与灾害规划、专项规划)、管理数 据(不动产登记、建设项目审批、自然资源管理及 监察)、社会经济数据(社会数据、经济数据、人口 数据、交通数据)等一系列数据的平台载体与实 现未来一切应用功能的基础。

自然资源部通知建设平台的时间为2019年, 与第三次全国国土调查、第七次人口普查的时间 区间整体一致,背后的涵义体现在要将国土底 图、人口底数纳入其中,未来将成为数字中国的 数据底板。因此,参与平台建设除了获取商业利 润外,也间接打通了未来参与智慧城市建设的 "数据入口""接口之门"。

2.2. 城市数字管理系统

城市数字管理系统是多行业融合高端技术

杭州城市大脑

集成的顶级应用领域。典型的产品包括城市大 脑、产业大脑、领导驾驶舱等相关产品,是城市管 理数字化转型升级下的智慧化信息系统、平台, 以解决城市发展过程中面临的诸多问题为目标, 在城市洞察、城市治理、产业发展、民生服务等领 域提供智能化的分析、诊断、预测、预警、模拟等 服务,是人工智能、大数据、计算机视觉等先进技 术的顶级集成应用。

数字管理系统天然具备统领性、示范性、融 合性的特征,是成熟智慧城市次世代建设的重点 内容,适合城市体量大、经济活力足、管理水平高 的城市大力发展,也注定了只能由最具技术与资 源实力的企业在少数城市进行实施部署,综合考 量未来商业合作、运营服务、模块拓展等方面的 潜在机遇,其顶级的"信息化生态位"在未来可产 生无限的拓展空间。

2.3. 城市安全

城市安全系统是企业实现与政府深度绑定 长期共赢的长线机遇。2020年初面对突如其来 的新冠肺炎疫情,这对智慧城市建设成果也是一

次大考,但多年的智慧建设并没有形成有效的布 控防疫体系,主要是靠强力行政措施+点状检测 设备(体温检测)+移动式信息登记(健康码)等综 合手段遏制疫情扩散,缺乏整体信息化的联动能

力,其背后的真实原因依然是长期以来形成的

"信息烟囱、数据孤岛"造成的数据共享效率低下

图片来源:本报图片库

造成的。 智慧韧性安全城市系统是疫情过后的关注 重点,是一项"纵向到底、横向到边,多方联动、整 体协调"的城市安全网络,需要打通各方的信息 壁垒才可以真正实现。可以看到,疫情防控过程 中"健康码+行程码"的方式成为了防疫关键,最 普通大众化的公众应用成为了强力行政举措落

实的得力助手,成为了政府长期选择合作的大众 化应用,凸显了安全行业内一个最大风口:深度 绑定城市安全网络一企业与政府携手长期共 赢。经历疫情防控一役,城市安全的重视级别被 大幅度调高,城市安全网络成为智慧城市建设重 点,未来携整体联动方案与数据共享技术者,将 与智慧城市的发展深度绑定。

三、对智慧城市建设的建议

对政府而言:第一,注重以人为本问题导向, 坚持创新驱动集约统筹。新型智慧城市建设指 标中将民众感知力作为重要考量因素,因此以 "为民、便民、惠民"为导向,从解决建设管理的实 际问题出发增强居民、企业、政府多方获得感,才 是系统开发的根本性需求,需成为集成商整体方 案的首要考虑因素;此外,为防止系统冗余,可推 动机制创新和技术创新双轮驱动的模式,以规 范、标准作为建设约束,以先进技术作为项目筛 选指标,进行标准化、集约化的建设运营。

第二,突出重点先行带动发展,扩大开放合 作完善机制。为避免全面推广可能引起的资金 投入过大,可从空间、业务领域两个维度划分重 点落位与应用,实现以片带面、以线带面发展;在项 目全过程运作中逐步完善政府、企业、公众等多方参 与机制,共同探索智慧城市可持续运营方式,鼓励多 方合作、数据共享、智力共享,推动新型智慧城市"三 融五跨"的真正落实。

对企业而言:第一,强化长期运营共谋持续收 益。结合近期一系列政府采购项目,均要求企业在 属地提供长期的运营服务,因此企业规模较小、人员 资金紧张的企业需摒弃过去"跑马圈地"理念,坚持 前置长期的运营服务,将回报周期预期延长,注重发 挥存量资产的持续性运营收入。

第二,重视系统利日突出整体融合。目前,各委 办局内已存在大量既有系统,系统的停用会牵扯到 政府审计程序,因此,在顶层设计阶段就要将系统 利旧纳入考量范围,同时做到与原系统、平台接 口统一,防止系统孤立,发挥整体联动能力。

第三,突出系统差异彰显属地特色。信息化 系统带有很强的通用性,可实现便捷的批量化部 署,但各地的城市特色、面临问题不尽相同,因此 定制化的系统功能开发是企业进军不同地域获 取订单的必备能力。同时,建立强大的技术售 前、行业专家团队是拓展企业能力的关键所在, 助力企业站在行业高度、城市视角思索如何将系 统功能与城市特色有效结合、突出问题的针对 性,这也是企业在新型智慧城市高质量发展阶段 必须要深度思考的战略性、原则性问题。

(作者单位:北大科技园创新研究院)

本报地址:北京市西城区西直门外大街132号京鼎大厦8层 邮编:100044 总机:(010)68667266 传真:(010)68669206 广告热线:(010)6866996 发行热线:(010)68667266-152 广告登记:京石市监广登字20190003号 今日16版 零售价:5.00元 新华社印务有限责任公司